Solution of the Implicit Colebrook Equation for Flow Friction Using Excel

نویسنده

  • Dejan Brkic
چکیده

Empirical Colebrook equation implicit in unknown flow friction factor (λ) is an accepted standard for calculation of hydraulic resistance in hydraulically smooth and rough pipes. The Colebrook equation gives friction factor (λ) implicitly as a function of the Reynolds number (Re) and relative roughness (ε/D) of inner pipe surface; i.e. λ0=f(λ0, Re, ε/D). The paper presents a problem that requires iterative methods for the solution. In particular, the implicit method used for calculating the friction factor λ0 is an application of fixedpoint iterations. The type of problem discussed in this "in the classroom paper" is commonly encountered in fluid dynamics, and this paper provides readers with the tools necessary to solve similar problems. Students’ task is to solve the equation using Excel where the procedure for that is explained in this “in the classroom” paper. Also, up to date numerous explicit approximations of the Colebrook equation are available where as an additional task for students can be evaluation of the error introduced by these explicit approximations λ≈f(Re, ε/D) compared with the iterative solution of implicit equation which can be treated as accurate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Flow Friction Estimation

Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Re...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

Sequential Implicit Numerical Scheme for Pollutant and Heat Transport in a Plane-Poiseuille Flow

A sequential implicit numerical scheme is proposed for a system of partial differential equations defining the transport of heat and mass in the channel flow of a variable-viscosity fluid. By adopting the backward difference scheme for time derivative and the central difference scheme for the spatial derivatives, an implicit finite difference scheme is formulated. The variable-coefficient diffu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017